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a b s t r ac t

The shear behavior and strength of reinforced and prestressed concrete structures are difficult to predict due to the complex resistant mechanisms that 
are mobilized and the different types of failure that can occur. This has given rise to many of the simplified formulations previously developed for shear 
calculation being empirical in nature, which lack a clear theoretical basis and they do not provide qualitative information on structural behavior. There-
fore, performance-based design becomes difficult using such types of formulations. In this paper, some questions about shear behavior and design are 
raised, apparently without an immediate answer from the performance point of view, and possible answers based on structural mechanics are provided. 
The physical phenomena that determine the shear behavior, the resistant mechanisms that are developed, the fundamental parameters that govern them, 
to what extent they influence and how they are contemplated in some simplified formulations are analyzed. The importance of mechanical models is 
raised and some examples of how these models can be naturally adapted to multiple project situations, evaluation and reinforcement of existing struc-
tures are shown.
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r e s u m e n

El comportamiento y la resistencia a esfuerzo cortante de estructuras de hormigón armado y pretensado resultan de difícil predicción por los comple-
jos mecanismos resistentes que se movilizan y las distintas formas de rotura que pueden producirse. Ello ha dado lugar a que muchas de las formula-
ciones simplificadas previamente desarrolladas para cálculo a cortante sean de carácter empírico, sin un claro fundamento teórico y no proporcionen 
información cualitativa sobre comportamiento estructural, lo que dificulta el proyecto basado en prestaciones. En este artículo se plantean algunas 
preguntas sobre diseño y comportamiento a cortante, aparentemente sin una respuesta lógica desde el punto de vista prestacional, y se aportan posi-
bles respuestas basadas en la mecánica estructural. Se analizan los fenómenos físicos que determinan el comportamiento a cortante, los mecanismos 
resistentes que se desarrollan, los parámetros fundamentales que los gobiernan, en qué medida influyen y como son contemplados en algunas formu-
laciones simplificadas. Se plantea la importancia de los modelos mecánicos y se muestran algunos ejemplos de cómo estos modelos pueden adaptarse 
de forma natural a múltiples situaciones de proyecto, evaluación y refuerzo de estructuras existentes.
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notation

a shear span, 
b width of the cross-section. 
bv,eff effective width of T shaped cross sections for shear 

strength 
bw width of the web on T, I or L beams. For rectangular 

beams bw = b

d effective depth of the cross-section. 
d0 effective depth of the cross-section, d, but not less than 

100 mm
fcc concrete compressive strength, in general
fcd design value of concrete compressive strength
fck characteristic compressive strength of concrete
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fcm mean compressive strength of concrete
fct concrete tensile strength, in general
fctm mean tensile strength of concrete, in MPa
fywd design yield strength of the shear reinforcement
h overall depth of a cross-section
hf height of the compression flange in T, I or L beams.
s distance from the considered section to the point of 

zero bending moment
st spacing of the stirrups
scr location of the section where the critical shear crack 

starts
x neutral axis depth of the cracked section
x0 neutral axis depth of a PC member considering P = 0 
y vertical coordinate in section analysis
z inner lever arm corresponding to the bending moment 
Ac area of concrete cross section
As area of mild reinforcement
Asw cross-sectional area of the shear reinforcement
Asw,min  minimum cross sectional area of shear reinforcement
Es modulus of elasticity of reinforcing steel
Kad shear strength amplification factor in non-slender 

beams 
Kc is equal to the relative neutral axis depth, x/d, but not 

greater than 0.20
Kτ shear stresses integration constant 
Mcr cracking moment at the section where shear strength is 

checked 
ME concomitant bending moment
NE concomitant axial or prestressing force 

P prestressing force after total losses
Vcu contribution of the concrete to the shear strength of a 

member 
VEd design shear force in the section considered
VRd design shear resistance of the member
VRd,max  design value of the maximum shear force which can be 

sustained by the member
Vsu contribution of the shear reinforcement to the shear 

strength of a member 
Vu Shear strength computed according to a theoretical 

model 
α angle between shear reinforcement and the longitudi-

nal beam axis 
αcw coefficient taking account the state of the stress in the 

struts
αE modular ratio, αE = Es /Ecm

υ1 strength reduction factor for concrete cracked in shear
θ angle between the concrete compression strut and the 

beam longitudinal axis 
ρl longitudinal tensile reinforcement ratio referred to the 

effective depth d and the width b. 
σcp concrete compressive stress at the centroidal axis due 

to axial loading and/or prestressing 
σx concrete normal stress, in the longitudinal x axis
σy concrete normal stress, in the vertical y axis
σ1 concrete principal tensile stress
σ2 concrete principal compressive stress
τ concrete shear stress
ζ size effect factor

1.
introduction

The current trend in structural design codes is to allow the 
designer, under his/her responsibility, to adopt hypotheses or 
use design equations, based on theoretical principles or test 
results, other than those proposed or explicitly accepted in the 
code, provided that the required levels of safety, functionality 
and durability are satisfied. This is called “Performance-based 
design (PBD)” and, in order to carry out such type of design, 
it is necessary to clearly understand the structural behavior, to 
identify the variables that govern it and to what extent they do 
so, among other aspects.

In the case of shear design, the phenomena that take place 
are of considerable complexity and it is not immediate to take 
them into account in formulations intended for design, which 
must necessarily be simple and at the same time capture the 
most important phenomena with a certain degree of conserva-
tism.  For this reason, in many design codes, empirical formulas 
developed adjusting mathematical functions to experimental 
results, have been often adopted. Despite being a good ap-
proach in design phases, these formulas are essentially a black 
box in unforeseen situations, what is an important limitation 
for performance-based design.

Numerical methods are currently available that rigorously 
simulate the complex phenomena affecting the shear behavior 
and strength. However, despite the enormous advances made 
in this field, they are still limited in engineering practice to 
particular cases or for research tasks, where they can help to 

verify some hypothesis or may be used as simulators of physi-
cal experiments, in order to perform parametric studies.

In between empirical and numerical models are the me-
chanical models, based on the principles of the structural me-
chanics of reinforced concrete, that try to capture the experi-
mentally observed behavior. The best-known case is that of the 
Ritter and Mörsch truss analogy [1], [2] which simulates the 
behavior of a reinforced beam cracked in shear by means of a 
system of distributed struts and ties, in equilibrium with exter-
nal loads. Although there are some aspects of shear behavior 
not considered in this model, it has been the basis of the shear 
design methods for beams with shear reinforcement for more 
than a century, thanks to its mechanical nature. 

Because of their genesis, mechanical models provide an in-
sight into the physics of the problem and allow expressions 
to be derived, in which the governing parameters of the shear 
behavior appear naturally with its corresponding weight. In 
addition, they allow to capture contributions or aspects usu-
ally not accounted for in the design phase, but which may be 
relevant in the evaluation of existing structures. The ability to 
adequately capture the influence of the different parameters 
allows for justifiable simplifications, limiting the errors made. 
As a result, formulations can be derived that are sufficiently 
simple but accurate at the same time, to serve in the design 
stage of new structures, and for evaluation and strengthen-
ing of existing structures. Moreover, its extrapolation or ad-
aptation to new situations of geometry, materials or loads, is 
straightforward by accounting for the differential aspects of 
the case under study. 
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This paper aims to show how mechanical models may 
contribute to the understanding of some aspects of the shear 
behavior and strength of structural concrete members. For this 
purpose, the most relevant phenomena affecting the shear 
behavior, the shear transfer actions developed and the behav-
ior under increasing load up to failure are briefly described. 
Next, a classification of the mechanical models is made based 
on how they address the previously mentioned aspects, em-
phasizing on those methods based on the contribution of the 
uncracked compression chord as main shear transfer action. A 
series of questions about aspects of shear behavior and design 
often not sufficiently well understood, are posed and possible 
answers are given, based on how the “Multi-action Shear Mod-
el” (MASM) [3], [4] and its simplification, the "Compression 
Chord Capacity Model" (CCCM) [5] face the shear design. 
Subsequently, in order to demonstrate the accuracy and ro-
bustness of these mechanical models, comparisons between 
their predictions with the results of 3295 shear tests on a large 
variety of members with different geometry, reinforcement ar-
rangements, types of loading and materials, are made. 

2.
relevant aspects of the shear behavior of
concrete structures

The complexity of the shear behavior of reinforced and pre-
stressed concrete structures can be associated to the low ten-
sile strength of concrete, to the presence of combined normal 
and shear stresses and to the quasi-brittle nature of concrete. 
Consequences of these phenomena are, among others:

• The inclination of the principal stresses, and thus, the
formation of diagonal cracks, which deeply modify the
stresses fields and the flow of forces in the concrete (crack-
ing-induced anisotropy), and give place to the so-called
shear-flexure interaction.

• The influence of the multiaxial state of stresses on concrete
strength. As a consequence, the verification of the concrete
strength using the uniaxial compressive strength (adopt-
ed in design) must be reduced or enhanced as a function
of the orthogonal principal stress, as it occurs in concrete
struts but also in uncracked concrete zones. Such effect can
be quantified through biaxial failure envelopes.

• The reduction of the mean shear stress, τm , resisted by a
beam, τm=V/(bd), as the beam dimensions increase, known
as “size effect”. A transition from nearly ductile behavior in
small concrete structures to nearly brittle behavior in large
ones takes place due to the material heterogeneity which
causes the fracture process zone to be long and non-negli-
gible compared to the cross-section size.

• The enhancement of the shear strength of a beam as the
ratio between the shear span and the effective depth de-
creases, as it occurs in deep beams and in beams subjected
to concentrated loads applied near the supports. In those
cases, the lower value of a/d, the higher the shear that can
be resisted

• The favorable effects of the confinement introduced by
stirrups in the concrete compressed chord, producing on
it a multi-axial state stress. Likewise, the transverse rein-

forcements contribute to reducing the risk of failure due 
to sliding in inclined cracks.

• The possible spalling of the concrete cover, longitudinal
cracking and loss of anchorage of the longitudinal rein-
forcement in members subjected to strong shear forces, in
which high bond stresses are produced due to the variation
of its tensile force in longitudinal bars.

The aforementioned phenomena are accounted for, to a great-
er or lesser extent, through different shear resistant mecha-
nisms. According to ASCE-ACI Committee 445 [6], the shear 
strength in a RC beam is provided by the following contribu-
tions (see Figure 1):
• The shear resisted by the un-cracked concrete chord Vc ,

which is subjected to normal and shear stresses due to
shear forces, axial forces and bending moments. The maxi-
mum shear force resisted is associated to the state of prin-
cipal stresses that reaches a point of the concrete biaxial
failure envelope.

• The shear transferred along the cracks, Vw, which is com-
posed by the residual stresses that can be transferred across
the crack and by the force transferred through aggregate
interlock.

• The shear resisted directly by the transverse reinforcement, 
Vs, crossing the critical crack

• The shear resisted by the longitudinal reinforcement, Vl,
subjected to differential displacements of the two opposite
faces of the inclined crack, called dowel action.

In general, the four above mentioned main shear transfer ac-
tions are grouped into two, called the concrete contribution 
Vcu, considered as the sum of Vc, Vw and Vl and the steel con-
tribution Vsu:

M
V

Vc

C a) Compression chord

b) Aggregate interlock

c) Residual tensile
stresses in the crack

d) Dowel Action
Vl

T Vs e) Stirrups

x

Figure 1. Shear transfer actions 

There is a general consensus in the value of Vs, that can be 
derived from the well-known truss model. However, there are 
relevant differences in the value assigned to the concrete con-
tribution Vc in different codes of practice, as the relative con-
tribution of each shear transfer action may change along the 
loading process due to cracking and softening of concrete un-
der multiaxial state of stresses, yielding of the reinforcement, 
bond slip and other nonlinear phenomena.   

As the load increases, localization of damage takes place and 
concentrates in a critical crack, whose width increases; hence, 
shear transferred by aggregate interlock and the residual stress-
es crossing the crack tend to reduce. Then, shear stresses con-
centrate around the neutral axis, and enter into the uncracked 
concrete chord, that will be subjected to a multiaxial stress state 
consisting of at least normal compression and shear stresses. 



Eventually, a second branch of the critical crack develops above 
the neutral axis trough the compression chord, in the point that 
first reaches the concrete strength under multiaxial stresses 
state, initiating softening of its shear transfer capacity. 

Figure 2 shows the typical evolution of the shear stress-
es in a reinforced concrete section, in the elastic, cracked and 
ultimate stages under increasing loading driving to a shear- 
flexural- failure, obtained through computer program Total 
Interaction Nonlinear Sectional Analysis (TINSA), developed 
by  Bairán [7].

At the same time, tensile shift in the longitudinal reinforce-
ment increases, which may produce bond cracks in the bottom 
reinforcement. If premature bond failure does not take place, 
failure of the element will be controlled by the shear capacity of 
the compression chord as it is the last element that typically in-
itiates softening. A detailed analysis of the shear transfer actions 
in reinforced concrete was done by Cavagnis et al. [8], using 
Digital Image Correlation. Bairán et al. [9] also performed an 
analysis of the shear resisting actions by means of optimization 
of strut and tie models according to crack patterns.

Other types of failure can take place, such as it occurs in 
prestressed pretensioned members without or with very low 
shear reinforcement ratio, in regions without flexural cracks. In 
those cases, failure usually occurs when the principal stresses 
at a point in the web reach the strength of the concrete un-

der the biaxial state of stress (Figure 3.a). A diagonal crack is 
generated in the web that extends towards the tension and 
compression heads.

Finally, in elements with high amount of shear reinforce-
ment, and thin webs, failure may occur due to excessive com-
pression in the compressed struts (Figure 3, right).

3.
brief description of some selected
mechanical shear models

A number of available mechanical models, grouped accord-
ing to the assumptions made, to the shear transfer mechanism 
considered dominant and to the way the size effect is treated, 
are briefly described. Among the many existing models, for the 
sake of simplicity and space, only a selected number of them 
are mentioned next

3.1. Models based on aggregate interlock, theory of plasticity 
or fracture mechanics

The Modified Compression Field Theory (MCFT), developed 
by Vecchio and Collins in 1986 [11], is a general model for 
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Figure 2. Evolution of cracking and shear stresses in a beam without shear reinforcement [7].

Figure 3. Shear web failures.  Left:  diagonal tension. Right: by web struts crushing [10].



bidimensional elements subjected to shear and normal stresses. 
The equilibrium equations, the compatibility conditions, and 
the constitutive equations of cracked concrete and reinforce-
ment enable to obtain, through an iterative process, the aver-
age stress, the average strain and the angle θ of inclination of 
the cracks for any load level up to failure. Failure of the RC 
element is rather governed by the local stresses occurring at a 
crack. This method was adopted by the Canadian code CSA 
(1994) [12] and the AASHTO (2000) [13], after some modi-
fications made by Bentz et al [12].  

The Critical Shear Crack Theory, (CSCT), by Muttoni 
and Fernández-Ruiz [15] assumes that the shear strength of 
members without stirrups is considered to be strongly de-
pendent on the critical shear crack width (which is consid-
ered proportional to the longitudinal strain at a distance 0.6d 
of the most compressed fiber, in a defined critical section), 
and on its roughness. The maximum aggregate size is an ex-
plicit parameter affecting the reduction of shear capacity due 
to size effect [16]. After some modifications this method was 
included as part of the Model Code 2010 provisions [17].

The Critical Shear Displacement Model developed by 
Yang, Walraven and Ujil [18], propose that the unstable 
opening of the critical inclined crack is triggered when the 
shear displacement in an existing flexural crack reaches a 
critical value Δcr. Thus the critical shear displacement is 
used as a failure criterion, and based on that a new shear 
evaluation method was proposed.

The above-mentioned models adopt the previous works 
made by Walraven [19] in 1981, to estimate the shear 
stresses along shear cracks.

Based on the Theory of Plasticity, Nielsen [20], stated in 
1984 that once the stirrups yield, increasing shear force can 
only be carried by increasing the compression stress σc which 
at the same time rotates to smaller angles θ. According to this 
theory, shear failure occurs either due to yielding of the stir-
rups or crushing of concrete in the web of the element. Di-
rect applications of the Theory of plasticity iare the Strut and 
Tie Method, Schalich et al. [21] and the variable angle strut 
method adopted by Eurocode EC2 [22], both for D regions 
and for B regions, assuming that no contribution of concrete 
exists. Reineck [23] proposed a method based on the Strut 
and Tie models applicable to beams without stirrups, con-
sidering that the concrete ties represent the shear resisting 
actions developed in the beam after diagonal cracking.

Bazant and Kim [24] developed a model considering 
concrete as a quasi-brittle material, since it possesses a 
large fracture process zone relative to its crack size. They 
proposed a structural size effect law to describe the qua-
si-brittle nature of concrete according to non-linear fracture 
mechanics, which captures the transition from the results 
obtained using Linear Elastic Fracture Mechanics (LEFM) 
and a plastic size criterion. This size effect  model has been 
adopted in the last version of the ACI 318-19 [25], [26]. 
Another well-known model based on non-linear fracture 
mechanics is the Fictitious Crack Model, developed by 
Hillerborg [27]. Recently, Carmona and Ruiz [28] studied 
through fracture mechanics the influence of bond between 
the reinforcing bars and the concrete matrix and the size 
effect on the evaluation of shear strength in reinforced con-
crete members without stirrups.

3.2. Models based on the contribution of the uncracked 
concrete chord 

A number of developed models consider the contribution of the 
compression chord as the main shear transfer action. In general, 
models based on this approach assume that in slender beams 
without shear reinforcement under two-point loading, the crit-
ical shear crack typically involves two branches, (Figure 4). The 
opening of the first branch of the critical crack is assumed to be 
orthogonal to the line of the crack, being the result of a rotation 
around its tip. The compression zone above the tip prevents any 
meaningful contribution of shear slip along the crack interface, 
thus the contribution of aggregate interlock and dowel action 
are considered small and may be neglected.  

Some of the numerous relevant works done in this field 
are those of Kostovos et al. [29], Zararis and Papadakis [30], 
Tureyen and Frosch [31] and Park et al. [32], Li et al [33]. 

Recently, Marí et al. [3], [4], proposed the Multi-action Shear 
Model (MASM), which provides expressions for the contribu-
tions of the four shear transfer actions (Vu=Vc+Vw+Vl+Vs). As 
some models previously explained, the MASM considers that the 
uncracked concrete in flexure is subjected to a multiaxial state 
of principal stresses (σ1, σ2), generated by shear force (τ), longitu-
dinal bending stresses (σx) and vertical stresses, (σy) due to local 
effects, that enhance the shear strength of the region. The effect 
of the confinement stresses in the uncracked concrete produced 
by the stirrups is incorporated to Vc.
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Figure 4. Assumed shape of the critical shear crack.



A simplification of the MASM, is the Compression Chord 
Capacity Model (CCCM) developed by Cladera et al [5] in 
which the terms Vw and Vl, which according to the assumptions 
made in [3] are considered much lower than Vc, are incorpo-
rated into the contribution of the uncracked concrete chord, 
Vc, resulting in a  much simpler formulation. In addition, a 
new size effect factor was introduced according to Bazant’s 
law, modified after an empirical work performed with genetic 
programming in [34], to account for the shear slenderness a/d. 

4.
derived equations of the compression chord
capacity model

The most relevant assumptions of the CCCM made are: 
• The shear stresses are concentrated in the uncracked com-

pression chord, concrete tensile strength is neglected and the 
normal compressive concrete stresses distribution is linear. 

• The critical shear crack starts at a section where at shear fail-
ure, the bending moment reaches the cracking moment of the 
section.

• The horizontal projection of the critical shear crack is 0.85d,
based on experimental observations.

• The weakest section subjected to a combined shear-bending
failure is considered to be located at the tip of the first branch
of the critical crack, where it reaches the flexural neutral axis

• Failure is assumed to take place when the pair of principal
stresses reach the Kupfer’s Biaxial Failure Envelope, Figure
15, [35]

• For usual values of a/d=M/Vd, the critical point inside the
compression chord, is located at a vertical distance from the
neutral axis z=0.425x , being “x” the neutral axis depth. 

The key equation to obtain the contribution of the concrete 
chord Vc, is the following: 

Vc = τ (y)b(y)dy = Kτ ζ x σ1 1– +
σx + σy

σ1

σx σy

σ1
2 (1)

0

c

where
τ(z)  is the shear stress at a point of the uncracked chord at a 

distance “z” of the neutral axis,
x is the neutral axis depth
σ1 is the principal tensile stress
σx is the normal longitudinal stress due to bending
σy is the normal vertical stress, if it exists
Kτ is an integration constant
ζ is the size effect factor given by Equation 6 of Table 1

Relating the normal stresses with the internal forces, and set-
ting the equilibrium conditions Eq. (1) can be expressed as 
a function of the internal forces and the components of the 
shear transfer actions. Once solved, Eq. (1) provides a solution 
in which the contribution Vc is almost a linear function of x/d. 
Table 1 shows the main equations governing the shear strength 
for the CCCM, for beams with rectangular cross section. Note 
that Vcu, given by Eq. (4) includes, in addition to the compres-
sion chord contribution given by Eq. (6), the contributions of 
the shear actions Vw and Vl. 

TABLE 1.
Summary of the CCCM equations for beam with rectangular cross section .

Equations Expressions

Shear strength

Strut crushing

Concrete contribution

Shear reinforcement

Factors Expressions

Size and slenderness effect

Relative neutral axis depth

Crack inclination

VRd =Vcu +Vsu ≤ VRd,max (2)

Vsu = 1.4 fyw(d–x) sinα(cotθ + cotα)Asw

st
(5)

≤ 2.5cotθ = 0.85 d
d – x

(8)

fc fcb d < Vcu,min=0.25(ζ Kc        ) bd2/3 2/3Vcu = ζ x
d

20
d0

VRd,max = αcw bw zv1 fc cotθ + cotθ
1+ cot2θ (3)

(4)

ζ = 0.45
0.2d

a
2

(6)
d0

200
1+

= αE ρl ≈ 0.75(αE ρl)
x
d

1/3
(7)2

αE ρl
–1+  1+

Equations included in Table 1 are intended for design purpos-
es, so they are expressed in terms of the design values of the 
materials strengths (fcd, fywd), which incorporate the materials 
safety coefficients. However, when studying the structural 
behavior or when predicting tests results, mean values of the 
materials should be used. Furthermore, it must be pointed out 
that in the particular case of Vcu,  Eq (4), Vcu was originally ex-
pressed in terms of the concrete mean tensile strength, fctm, 
(see reference [3] and section 5.8), as follows

Vcu = ζ x
d

(9)fctm bd Vcu,min = 0.83(ζKc +       fctm bd)20
d0

In the rest of the article, behavioral aspects will be addressed, 
so the written equations will not include safety coefficients.

The shear directly resisted by the shear reinforcement, given 
by Eq. (5), was derived considering the summation of the vertical 
force provided by the stirrups intersected by the first branch of 
the critical crack.  The constant 1.4 in Eq. 5 is not a calibration 
factor, but a term to take into account the confinement of the 
concrete in the compression chord caused by the stirrups [3].  

It should be noted that no iterations are needed to apply 
the model both for design or for assessment, since Eq. (4) is 
the linear solution adjusted to the actual solution of Eq. (1), 
once solved iteratively. 

An example of shear design of a 2-span continuous shoring 
beam subjected to two concentrated loads at midspan is pre-
sented in Annex A1, which can help to better understand the 
method and the answers given to the questions raised below. 

5.
some questions on shear behavior or
design and answers provided by the cccm
mechanical model

5.1. Why and how much the flexural reinforcement influences 
the shear strength?

According to CCCM, the shear strength contribution of the 
concrete chord is the result of the shear stresses in it, which 
depends on the depth of the compressed block, whose value 
is given by equation (7) of Table 1. It can be seen that x/d 
depends on the αEρl term, where ρ=As/(bd) is the geometric 
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amount of longitudinal reinforcement and αE =Es/Ec is the ratio 
between the Moduli of elasticity of steel, Es, and concrete, Ec, 
In addition to Vc, both Vl and Vw increase as the amount of 
longitudinal reinforcement increases, reducing the crack open-
ing and incrementing the dowel action. 

In addition, the angle of inclination of the cracks, given 
by the expression (8) depends also on x/d and, therefore on 
αEρl. As can be seen, the greater the amount of reinforcement, 
the greater the cotθ, so the greater the number of stirrups cut 
by the critical crack and the greater the Vsu, as indicated by 
equation (5). The same conclusion is drawn from the MCFT, 
and from the simplified equations adopted by the Canadian 
Standard for the angle of inclination of the cracks.

5.2. Why the shear slenderness “a/d” influences the shear 
strength?

The shear slenderness a/d is a relevant parameter because it 
influences the stress state of the concrete in the area where 
shear failure usually occurs 

Non-slender beams are considered those in which a/d 
is less than 2.5 This situation takes place 1)  in deep beams, 
where arch effect takes place due to the inclination of the 
compressed chord, 2)  in slender beams when there are point 
loads applied near the supports and confining stresses under 
the loading plate may enhance the strength of the compres-
sion chord. As a consequence, non-slender beams show higher 
shear strength than slender beams. 

How does the CCCM account for these effects?. The fol-
lowing differential aspects of the observed structural behavior 
are taken in consideration: 
a) the influence of the vertical stresses produced by the load-

ing plate, on the stress state in the critical point of the un-
cracked concrete chord. Such confining stresses, in the case
of loads close to the supports, affect the state of stresses at

the critical section) and increment the shear capacity of 
the compression chord, Figure 5, Bairán et al. [36]

b) the different position and inclination of the critical crack,
which due to be located in a disturbed (D) region, runs
straight from the inner ends of the bearing and loading
plates, resulting in a value cotθ = a/d, see Figure 6. Such
value increments the size effect factor of the model (Eq.
6), which is proportional to (d/a)0.2;

Solving the fundamental equation (1) for some estimated av-
erage value of the vertical stresses, σy, see Figure 5, [32], the 
following expression for the contribution of the uncracked 
chord under point loads applied near the supports, is obtained 
as a function of σy:

Vc = ζ x
d

(10)fct bd  1+ 0.5 σy

fct

c) the effects of the disturbed distribution of strains and
stresses in deep beams or in beams subjected to concen-
trated loads applied close to the support, which are not
planar and modifies the neutral axis depth compared to a
slender beam, see Figure 6.

In order to account for the increment of the neutral axis depth 
as the considered section approaches the support, a parabolic 
variation of c is assumed between a/d =2.5 (x1=x, B-region) 
and a/d=0 (x1=d) as follows:

=x1

d
x
d

a
d

x
d

(11)+ 1–       1– 0.4       ≤ 1
2

As a consequence of these assumptions, the concrete contri-
bution of the uncracked chord, Vcu increases and can be ex-
pressed as 

Vcu = ζ x
d

(12)Kad fct bd ~ 0.3ξ Kad fc   bd2/3
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Figure 5. Vertical confining stresses in beams with loads applied near the supports [36].

Figure 6. Distributions of stresses and strains in a slender and non-slender beam [36].



Where Kad is the factor enhancing the concrete contribution:

a
d

a
d

Kad =1+(2.5–     )2   ;  1≤      ≤ 2.5 (13)

5.3. Do we distinguish between end supports and intermedi-
ate supports when designing a continuous beam for shear? 

In continuous beams, the same equations are used for shear design 
of the zones near the exterior supports (where very low bending 
moment exists) and near interior supports (with high load bend-
ing moments). Therefore, the presence of a bending moment con-
comitant with the shear force is not explicitly considered. 

However, there are aspects of the structural behavior of 
continuous beams, usually not included in the codes of prac-
tice, that may justify such procedure

5.3.1. Effects of the different shear spans in the various shear 
critical regions 
Figure 7 shows the law of bending moments and an approxi-
mate diagram of cracking in a continuous beam with two un-
equal spans, subjected to a point load in the respective spans.  

It can be seen that there are three pairs of critical zones 
with similar behavior, where shear failure can occur: zones a1 
and a6, near the end supports,  zones a2 and a5 between the 
applied load and the zero bending moment point, and zones a3 
and a4 around the central support.

As the respective shear spans (the distances from the 
point of application of the load or reaction to the point of 
zero moment), at each region the shear strength will also be 
different. In general, regions a3 and a4 have the shorter shear 
span, and  the closer is the applied concentrated load to the 
support, the smaller is the shear span in such region. There-
fore, it is expected that in the central support the shear span 
is lower than in the zone of positive bending moments and 
be even a/d<2.5.  

5.3.2.  Effect of yielding of the longitudinal flexural reinforce-
ment on the shear strength
If the longitudinal flexural reinforcement yields in the zones 
of maximum negative moment, plastic hinges are formed and 

redistributions of bending moments and shear forces take 
place, as shown in Figure 7. Then, the point of zero bending 
moment becomes closer to the intermediate support, reduc-
ing the shear span and even increasing the arch effect (and 
the shear strength) in that area. Thus, since the design shear 
force decreases and the shear strength increases, the risk of 
shear-flexural failure around the central support diminishes. 

Does the yielding of the flexural reinforcement reduce 
the shear capacity in the plastic hinge?. Once the reinforce-
ment yields, its tensile force is limited to T=As·fyd and so is 
the compression force. Therefore, as the load and the plastic 
rotation increase, the depth of the compressed block decreas-
es, because it is necessary to increment the lever arm, and the 
width of the critical crack increases, so the contribution of 
the concrete decreases. Therefore, it is possible that in beams 
with very ductile sections, shear failure occurs inside the 
plastic hinge, before a collapse mechanism is formed. This 
type of shear-bending interaction has been experimentally 
studied by Vaz et al. [37] for simply supported beams and by 
Montserrat et al. [38], [39] for continuous beams. 

5.3.3. Effect of local stresses due to point loads or reactions
In zones a1 and a6 of Figure 7, subjected to positive moments, 
the critical crack usually occurs at a sufficiently long distance 
from the load so that the vertical stresses produced by the load 
do not affect the state of stresses in the compression chord of 
the critical section.

However, in the hogging zones of Figure 7 (a2, a3, a4 and 
a5), the critical cracks develop near the application of the 
load or the support reaction, and compression stresses both 
in the longitudinal and the vertical directions take place in 
the compression chord, produced by the bending moment 
and by the applied load or reaction, respectively. These verti-
cal stresses increase the shear strength in this zone, (see sec-
tion 6.2), similarly to what occurs in punching shear around 
a column, Marí et al. [40]

In order to quantify such confining stresses, a two-span 
continuous beam loaded with two equal concentrated loads at 
midspan tested by Bagge el al. [41], Figure 8, has been stud-
ied, by means of a nonlinear analysis performed with software 
Diana [42]. 
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Figure 7. Bending moments law and crack patterns in a two-span  RC continuous beam.
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The reinforcement and the materials properties of the ana-
lyzed beam are: As1=339mm2 (3ϕ12); As2=As3=101 mm2 (2ϕ8) 
; As4=942 mm2 (3ϕ20) ; Asw=0.67 mm2/mm (ϕ8, st=150 mm). 
fcm=36.4 MPa, fyl=536 MPa; fyw=657 MPa.

Figures 9a and 9b show the normal longitudinal stresses 
along the whole beam and the vertical normal stresses local-
ized around the central support, respectively. 

It can be observed that near the position of the critical 
point (around mid-height of the compression chord) verti-
cal stresses between 6 and 8 MPa and horizontal stresses in 
compression chord up to 12-25 MPa take place. According to 
equation 13, being fc=34.6 MPa and fct=3.2 MPa, the increment 
of shear resisted by the concrete in the bottom of the section, 
due to confinement stresses, around the central support is 93 
%. The ultimate load experimentally measured was 164 kN 
while the theoretical studies according to CCCM is 171 kN, 

which is 4.2% higher. This could explain why, in usual practice, 
the transverse reinforcement in the areas of intermediate sup-
ports, where negative moments are combined with shear forc-
es, is designed in the same way as in extreme supports, where 
there is almost no bending moment, without shear resistance 
problems being revealed. 

5.4. Why cantilevers resist more shear than identical simply 
supported beams.? Why cantilevers subjected to distributed 
load resist more shear than cantilevers subjected to point 
loads

Perez Caldentey et al. [43] tested reinforced concrete slender 
cantilevers with prismatic and tapered shapes, subjected to 
point loading, uniform loading, and triangular loading. They 
concluded that the behavior and shear strength of cantilevers 
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Figure 8.  Scheme of the beams tested by Bagge et al. [41].
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are very different from that of simply supported beams sub-
jected to distributed loading, and the type of loading signifi-
cantly affects the shear strength. For the constant-depth can-
tilevers tested, the same elements carried 27% more load for 
uniformly distributed loading than for point loading, and more 
than 100% for triangular loading than for point loading.

According to the CCCM, the critical shear crack starts 
from a flexural crack, at a section where the bending moment 
at shear failure is equal to the cracking moment of the cross 
section. Then, in the case of cantilevers, the distance from the 
initiation of the critical shear crack to the support is much 
lower than in the sagging region, as shown in Figure 10. There-
fore, a multi-compression state of stresses is generated around 
the support and an enhancement of shear strength similar that 
taking place in continuous beams, occurs.

Similarly, in cantilevers subjected to distributed loading, 
the critical shear crack starts closer to the support than in the 
case of a concentrated load (see figure 11), resulting in the 
same effect. 

5.5. Why the position of critical shear crack depends on 
the amount of longitudinal and transverse reinforcements? 
Which is the importance of such position? 

As already mentioned, the higher is the reinforcement ra-
tio, the higher are the shear and flexural strengths. Thus, as 

the cracking moment is almost independent of the amount 
of longitudinal reinforcement, the point where the bending 
moment law at shear failure equals the cracking moment 
xcr=M(x)/Vu=Mcr/Vu (where the critical crack starts, accord-
ing to CCCM), will be closer to the support as the higher is 
the longitudinal reinforcement because the shear strength is 
higher.

Furthermore, beams with shear reinforcement have a 
higher shear capacity than beams without shear reinforce-
ment. Following the same reasoning as before, the critical 
shear crack in beams with shear reinforcement will be closer 
to the support than for the same type of beams without shear 
reinforcement.

The position of the critical crack may be determinant in 
cases where the anchorage of the longitudinal reinforcement is 
exclusively provided by bond, as it is the case of prestressed 
pre-tensioned concrete beams. This is especially relevant in the 
case that bond strength between the strand and the concrete is 
low or is reduced by corrosion. In addition, the position of the 
critical crack indicates the position where, according to CCCM, 
should be verified the shear strength (control section), placed 
at a distance 0.85d of the crack initiation in the direction of in-
creasing bending moments. Therefore, it results that in the case 
of prestressed concrete members, the satisfaction of the shear 
strength in cracked zones must be done at a higher distance 
from the support than in the case of reinforced concrete beams. 
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Figure 10. Location of critical section in cantilevers and in simply supported regions.

Figure 11. Location of critical section in a cantilever, under concentrated and distributed loading.
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5.6. Do a rectangular RC beam and a T beam with the same 
effective depth and web width resist the same shear?

According to the linear elastic methods, historically used in 
structural design, bending is resisted by the tension and com-
pression chords, while shear is taken by the web. However, ex-
perimental studies [44–50] have shown that a significant incre-
ment in the shear strength of slender RC beams with T-shaped 
section takes place with respect to beams with equal height, 
web width and reinforcements amounts, see Figure 12, [44]. 

Figure 12. Effects of flanges on shear strength in beams with 
T-shaped cross section.

In addition, rigorous theoretical and numerical studies [51–52] 
have confirmed such concentration of shear stresses towards 
the neighborhood of the crack tip and towards the concrete 
compression chord, which in T beams is usually located in the 
flanges. Such stresses extend inside the flanges diminishing its 
intensity with the distance to the web (see Figure 13),[51].

 Figure 13. Concentration of shear stresses  in the compression chord 
extending to the flanges [51]. 

To account for this phenomena in a simplified way, a ”Shear 
effective flanges width” was defined  as a flange width that, as-
suming a constant shear stresses distribution in the transverse 
direction, would provide the same shear force in the flanges 
than the actual shear stresses distribution (Figure 14). 

 
 
 
 
 

 
 Figure 14. The “shear effective flanges width” in T shaped beams, 

adopted by the CCCM [49].

Such concept, previously developed [47], was incorporat-
ed into MASM and CCCM models by Cladera et al. [53]. 
The proposed value of the flanges effective shear width was 
obtained by considering that the flow of shear stresses f(z)= 
τ(z)·b(z) has a parabolic profile (section 4), and that the widths 
of the zones where the shear stresses are integrated depend on 
the position of the neutral axis with respect to the depth of the 
flanges, as indicated by Eq. 14a and 14b below: 

hf

x

if x ≤ hf → bv,eff = bw+2hf ≤ b

if x ≤ hf → bv,eff ≈ bw+(bv –bw)(   )3/2

(14a)

(14b)

Other beneficial effects of the T or I sections is the confine-
ment of the concrete in the core between the flanges and the 
web, provided both by the concrete flanges and by the trans-
verse reinforcement, if present. Such enhancement can be tak-
en into account by the MASM and the CCCM through the 
normal transverse stress σz , as it occurs with the stresses pro-
duced by  moments tangential to the perimeter of a column in 
the case of punching shear of flat slabs [40]. 

Since an accurate assessment of existing bridges and other 
transportation infrastructures, which are often being built with 
T-shaped cross section members, requires a realistic evaluation 
of the structure strength, models that account for the flanges 
contribution provide a more realistic approach and can be very 
useful in the assessment of existing structures.

5.7. Does an axial compression force influence the shear 
strength to the same extent as a tensile force?. How does pre-
stressing eccentricity influence the shear strength?

Moderate compressive axial stress increases the depth of the 
compression block for equilibrium reasons, delays cracking due 
to the reduction of the principal tensile stresses, and reduces 
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crack width, and the inclination of the concrete struts (higher 
cotθ). Consequently, the contributions Vc, Vw and Vs increase. 
This effect is accounted for in the MASM and CCCM models 
through x/d, which in turn influences the angle of the cracks, 
since cotθ=0.85/(1-x/d). Therefore, the higher the compres-
sion axial force, the larger x/d and larger cotθ. According to 
Mari et al [54], the neutral axis depth in members subjected to 
an external axial compression “NE” may be obtained by:

d
h

NE ≥ 0 → x = x0 + 0.80(h–x0)(   )           ≤ h  (15)σcp

σcp+ fctm

where x0 is the neutral axis depth of the element assuming 
N=0 and σcp=N/A is the mean compression stress.  It is impor-
tant to note that the ratio σcp/fct is decisive in the calculation 
of x/d and, therefore, in the shear strength of prestressed con-
crete members. 

In addition, the eccentricity of prestressing increases the 
shear strength, because the prestressing moment P·e, is con-
trary to the moment generated by external loads and, addi-
tionally, increments the cracking moment. These effects are ac-
counted for by the MASM and CCCM models, including the 
prestressing force P and its eccentricity into the equilibrium 
equations, in which the cracking moment of the prestressed 
section is included [54].

Under axial tensile stress, the depth of the compression 
block is reduced, the cracks are widened, and the angle of in-
clination of the struts is increased, thus decreasing cotθ.  Con-
sequently, the shear strength decreases, as concluded by D. 
Fernandez et al. [55], and Marí et al. [56] for beams and by 
P. Fernandez et al, [57] for punching in slabs subjected to in 
plane tension forces. According to MASM and CCCM models 
the depth of the neutral axis can be estimated as:

NE < 0 → x = x0 (1+ 0.1         ) ≥ 0 (16)NE  d
ME

In addition, under severe axial load, tensile flexural reinforce-
ment may prematurely yield, causing a further reduction of 
the shear strength, Fernandez et al. [57]

5.8. How the compressive and tensile concrete strengths influ-
ence the shear strength of reinforced and prestressed concrete 
beams?

Some shear strength equations are expressed in terms of fcd, 
others in terms of (fck)1/3 and some in terms of (fck)1/2, what may 

generate confusion. As already mentioned, concrete is subject-
ed to a multi-axial stress state, so its strength in one direction is 
affected by the stress in the orthogonal direction. For example, 
according to EC2, in the struts, a reduction factor 0.6 of the 
uniaxial compressive strength in the struts direction, is used to 
account for the orthogonal tensile stresses. 

In the compression chord, concrete is subjected to a bi-
axial compression-tension state of principal stresses and fail-
ure starts when at any point the biaxial failure envelope, is 
reached. The MASM and CCCM adopts the Kupfer and Gers-
tle failure envelope [35], see Figure 15, assuming the following 
linear equation for the tension-compression branch. 

(17)σ1

fct

σ2

fcc
+ 0.8      = 1

Therefore, according to Eq. (17), both compression and ten-
sion concrete strengths influences the strength of the compres-
sion chord. 

From Eq. (17), the principal tensile and compression 
stresses can be expressed as indicates Eq. (18), where the 
terms inside the parenthesis are the reduction factors due to 
the orthogonal stresses:

(18)σ1

fct

σ2

fcc
σ1 = (1–  0.8     ) fcc  ;   σ2 = 1.25 (1–      ) fcc

Therefore, the MASM/CCCM fundamental equation (1) 
could be expressed indistinctly in terms of the tensile strength 
fct or in terms of the compressive strength fcc, accounting for 
the respective reduction factor due to the orthogonal stresses. 

5.9. Why mechanical shear models that consider differ-
ent dominant shear transfer actions provide similar shear 
strength?

Figure 16, [54] shows the typical experimentally obtained 
load-displacement curve of a beam subjected to shear. In mul-
tiple tests, it has been observed that after the second branch of 
the critical crack develops, the load capacity generally does not 
significantly increase further, as softening of the concrete in 
the compression zone, which is subjected to both compressive 
and shear stresses, begins. This behavior has also been reported 
by other researchers in tests of notched specimens designed to 
study mixed-mode crack propagation through reinforced con-
crete, [59] shown in Figure 16. In fact, the last phase of crack 
propagation, when the crack changes its trajectory and gets 
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Figure 15. Kupfer and Gerstle biaxial failure envelope adopted.



more inclined, is typically unstable, in the sense that it is due 
to an energy release rate that equals the energy needed for the 
propagation. This is clear in Figure 16 since almost no external 
energy is provided from point A to point B according to the 
load-deflection. 

According to the load-deflection curve of Figure 16 right, a 
redistribution of internal forces may occur between load stag-
es A and B and that while the shear resisted by the uncracked 
chord diminishes, the aggregate interlock in the compression 
chord increases (red branch, between A and B), until crushing 
of the compressed chord or loss of anchorage of the longitudinal 
reinforcement occurs. As the difference in values of the resisted 
load between points A and B is usually small, there are models 
that are proposed to capture the load at point A, while other 
models that try to capture the situation at failure (point B). 

The models that try to obtain point A, incorporate the 
strength of the uncracked chord just before the crack prop-
agates inside it. For this reason, the neutral axis depth and Vc 
are high. In turn, since the crack in the tension zone is very 
open, and the compressed zone above the tip prevents any 
meaningful contribution of shear slip along the crack interface, 
the contributions of aggregate interlock and dowel action are 
considered small compared to  Vc (Figure 17a)

On the contrary, the models that seek to find point “B”, 
consider the critical crack fully develops and the depth of the 
compressed block at the end of the crack is very small, re-

sulting in a very low value of Vc. However, they incorporate 
the friction force along the second branch of the critical shear 
crack as a part of the aggregate interlock, whose vertical com-
ponent is considered to be incorporated as Vw, Figure 17b. This 
has been observed in numerous tests, thanks to today’s capac-
ity to measure displacements using Digital Image Correlation, 
Cavagnis [60], and Montoya-Coronado et al. [61]. The next 
step is to show, through theoretical approaches, that the sum 
of the shear transfer actions in points A and B are very close. 

MASM and CCCM models are among those based on 
the contribution of the compression chord as dominant shear 
transfer action, so the shear strength predicted corresponds to 
point A in Figure 16. Thus, it is relevant to show the accuracy 
and robustness of these methods when predicting the shear 
strength in multiple situations. 

In fact, the MASM, and subsequently the CCCM, were 
originally developed for reinforced concrete slender members 
with and without shear reinforcement made of steel, and rec-
tangular cross section [3-4]. Subsequently it was extended to 
reinforced concrete beams with T and I sections [53], pre-
stressed concrete members [54], members subjected to ten-
sion axial loads [56], beams reinforced with FRP longitudinal 
[62] and shear reinforcements [63], to steel fiber reinforced 
concrete beams (SFRC) [64], to non-slender beams [36], 
to punching of slabs under symmetrical loading [40] and to 
punching of slabs subjected also to in-plane axial tensile forces 
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Figure 16. Load-displacement curve, crack propagation, and shear capacity models.

 a) b) 
Figure 17. Schematic critical crack and forces in a) MASM and CCM b) Shear friction models.



[57]. Further extension of these models is currently being car-
ried out, i.e.  to punching of eccentrically loaded slabs,  to slabs 
strengthened with post-installed studs and to SFRC slabs, to 
prestressed concrete beams using FRP tendons including the 
loss of bond strength in pre-tensioned beams,  to composite 
members made of reinforced or prestressed concrete beams 
and cast-in-place slabs. 

A comparison between the shear strength predicted by the 
CCCM (Vu,theo) and the experimental shear strength (Vu,exp), 
measured in 3295 tested members, included in 16 different 
previously published shear-databases, has been made, updating 
the work previously done by Cladera et al [65]. 

The statistical results show that the theoretical predic-
tions are reasonably safe, precise and with low scatter. The 
mean value of the ratio Vu,exp/Vu,pred , ranges between 1.02 
and 1.35, the minimum value of the 5% percentile is 0.75, 
indicating that the 95% of the data have a ratio Vu,exp/Vu,pred  
greater than 0.75. Finally, the CoV ranges between 0.093 and 
0.267, which is considerably low, despite the complexity of 
the shear behavior, the uncertainties associated to the ten-
sile concrete strength and the variety of cases studied, among 
many other factors.

6.
conclusions

- In this paper, some questions on shear behavior and strength, 
that arise from a limited understanding of the shear resisting 
mechanisms when using empirical models are raised. An-
swers to these questions have been provided according to 
mechanical shear models, based on the contribution of the 
uncracked concrete zone as main shear transfer action.

- The following aspects have been addressed and clarified:
- The influence of the longitudinal reinforcement, the 

shear slenderness, the axial tension or compression 
forces and the local stresses near applied concentrated 
loads or reactions on the shear strength.

- The reasons for the differences existing between the 
shear strength of simply supported, continuous beams 
and cantilevers

- The contribution of the flanges in T or I shaped beams 
to the shear strength 

- How the location of the critical crack can be deter-
mined based on the hypothesis of the CCCM, and its 
relevance to identify the position of the control section 
and to quantify the strength of a bond anchorage. 

- A rational explanation to why models that consider differ-
ent dominant shear transfer actions drive to quite similar 
results, has been provided, based on the redistributions be-
tween shear transfer actions, along the incremental loading 
process. A way to develop a unified theory, which would 
ease performance-based shear design remains open.

- The answers provided to the questions raised, show the 
capacity of the mechanical models, and in particular the 
MASM and CCCM, to provide an insight into the shear 
behavior. This fact, together with the simplicity of the pro-
posed equations and the accuracy obtained in the com-
parisons with 3295 experimental results, including a large 
variety of situations, prove these models to be adequate for 
carrying out performance-based shear design, as well as for 
assessment and strengthening of existing structures 
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APPENDIX 1.

shear design of a reinforced concrete shoring 
beam by means of the cccm

A1.1 Definition of the structure

Consider a continuous reinforced concrete shoring beam of 
two equal spans of 6 m, that must resist two concentrated 
variable loads of Qd=300 kN each, fixed at midspan. The self-
weight is ignored for the sake of simplicity. The cross section 
is rectangular of dimensions b=400m, h=550mm, and an ef-
fective depth d=500 mm is assumed. Figure A1.1 shows the 
structural scheme and the design bending moments and shear 
forces laws. The longitudinal reinforcement in the bottom con-
sists of a basic reinforcement of 3ϕ20 along the whole beam 
and an additional reinforcement of 2ϕ20+2ϕ16 placed in a 
length of 4.5m from the end supports. At the top, the basic 
reinforcement consists of 4ϕ16 bars and the additional rein-
forcement consists of 3ϕ20 extended to 3 m length at both 
sides of the intermediate support axis, as shown in Figure A1.2      

Concrete characteristic strength is 25 MPa (γc = 1.50), 
Yield strength of both longitudinal and transverse reinforce-
ments is 500 MPa (γs = 1.15), but the design strength of the 
transverse reinforcement is limited to fywd=400 MPa, for crack-
ing control reasons.

A1.2.  Design of the reinforcement near the end supports

According to the CCCM, the section where the shear rein-
forcement should be designed is where at shear failure the 
bending moment equals the cracking moment, M(scr)=Mcr. 
For a point load, the bending moment is linear, M(x)=Vd·x, so 
being the cracking moment of the beam Mcr=51.6 kNm, and 
Vd = 121.8 kN the design shear force corresponding to the 
end supports zones,  the position of the section where the crit-
ical crack starts is scr=Mcr/Vd=51.6/121.8=0.42m.  For de-
sign purposes, since the shear force is constant Vd=121.8 kN, 
no matter the section considered.  In the case that the shear 
force law is not constant, the section where the critical crack 
starts should be obtained equaling the bending moment to the 
cracking moment. Assuming a uniformly distributed load “g”, 
where the design shear force is Vd=Rd= αgL the design section 
would be:

(A1.1)scr = αL   1– 1–
Mcr

Mmax

For two equal spans, α=0.375 and Mmax=0.0703 ql2.
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Longitudinal reinforcement area: 5 ϕ20 + 2ϕ16 = 1972 
mm2
Concrete properties and neutral axis depth:

fck

γc

Es

Ecm

As

bd

fcm

10
33
10

1972
400·500

16.67 MPa  ;  fctm = 0.30    fck   = 2.56 MPa

–1+ 

Fcd = 

Ecm = 22000 

αE =       = 6.35

ρl =      =               = 0.000986;

= nρl = 0.296;      x = 148 mm

= 22000 = 31475 MPa ;

1–
2

nρl

0.3 0.3

x
d

The shear span to effective depth ratio, a/d, at each re-
gion, should be calculated for the load combination that 
produces maximum shear, and its concomitant bending 
moment. For the case of the shear near the end supports, 
such combinations correspond to a single point load ap-
plied, for which Vd=121.8 kN and Md=365.4 kNm.
Which is less than the minimum shear reinforcement 
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Figure A1.1. Structure scheme and design bending moments and shear forces laws.

Md= -337.5 kN·m

Vd=206.3 kN

Vd=121.8 kN

Md= 280.8 kN·m

Md= 365.4 kN·m

Md= 280.8 kN·m

Md= 365.4 kN·m

Vd=206.3 kN

Vd=121.8 kN

a
d

Md

Vd d
365

121.8·0.5
Size effect:     =        =                 = 5.99

2

500
200

(5.99)0.2 1+

ζ =                       = 0.747

Vcu =0.3 ζ x
d

fcd  bv,eff d = 0.3·0.747·0.296·16.672/3·400·500=86.5KN Vcu,min

Vcu,min =0.25  ζ Kc +       fcd   bw d = 0.25  0.709·0.20 +        16.672/3400·500 =

cotθ =          =                = 1.20 ≤ 2.50 ;   θ = 39.7º

Vsu = Vd –Vcu = 121.8 – 86.5 = 35.3 kN

Vsu = 1.4       fywd (d–x) sinα (cotθ + cotα)= 238000        = 35300 N

=             = 0.148

fywd =       = 435  ;  sinα = 1   ;  cotα = 0

Design of the shear reinforcement

= 59.2 kN

20
d0

0.85d
d–x

Asw

st

Asw

st

mm2

mm2

35300
238000

Asw

st

0.85 · 500
500–148

20
500

500
1.15



area per unit length:

VRd,max =αcw bw zv1 fcd                          =1·400·500·0.9·16.67

= 0.08 bw         = 0.03·400        =

Verification of the struts strength VEd<VRd,max

Asw,min

st

cotθ + cotα
1+ cot2θ

1.20
1+1.202

fck
fyk

= 0.35 mm2 / mm (ϕ8 mm , s=300 mm)

= 885.3 kN > VEd = 121.8 kN

Then, minimum reinforcement, consisting of closed stirrups of 
ϕ8 mm, spaced 300 mm is placed.

A1.3.  Design of the shear reinforcement near the intermedia-
te support 

Longitudinal reinforcement area: 3 ϕ20 + 4ϕ16 = 1746 mm2

As

bd
1746

400 · 500
ρl =      =              = 0.0008732;

nρl  1+ = 0.282;      x = 141 mm1+
2

nρl

x
d

In this case, the maximum shear force near the central supports 
takes place under two loads applied, so Md=-337.5 kNm and 
Vd=206.3 kN.

a
d

Md

Vd d
337.5

206.3·0.5
Size effect:     =        =                 = 3.27

2

500
200

(3.27)0.2 1+

ζ =                       = 0.843

Vcu =0.3 ζ x
d

fcd  bv,eff d = 0.3·0.843·0.282·16.672/3·400·500=92.9KN Vcu,min

Vcu,min =0.25  ζ Kc +       fcd   bw d = 0.25  0.843·0.20 +        16.672/3400·500 =

cotθ =          =                = 1.18 ≤ 2.50 ;   θ = 40.2º

= 67.9 kN

20
d0

0.85d
d–x

0.85 · 500
500–141

20
500

Then, closed stirrups of ϕ8 spaced 200 mm are placed.

VRd,max =αcw bw zv1 fcd                          =1·400·500·0.9·0.6·16.67cotθ + cotα
1+ cot2θ

1.18
1+1.182

= 887.5 kN > VEd = 206.3 kN

A1.4.  Verification of the shear strength in the region of positive 
bending moment, between the load and the central support

The maximum shear in this region is 206.3 kN, produced when 
there are two point loads. For this load combination, the positive 
bending moment is 280.8 kNm. Then, the values a/d and ζ are:
Size effect:
The values of x/d =0.296 and cotθ =1.207 as in the first case. 
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Figure A1.2 Reinforcement arrangement
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B

B' stirrup Ø8/300

Vsu = Vd –Vcu = 206.3 – 92.9 = 113.4 kN

Vsu=1.4      fywd (ds–x)sinα(cotθ+cotα)=240000       = 113400 N

=             = 0.472

fywd = 400 MPa  ;  sinα = 1   ;  cotα = 0

Design of the shear reinforcement

Asw

s

Asw

st

mm2

mm2

113400
240000

Asw

s

a
d

280.8
206.3 · 0.5

=        =               = 2.72;

nρl  1+ = 0.282;      x = 141 mm1+
2

nρl

x
d

Md

Vd d

2

500
200

(2.72)0.2 1+

ζ =                       = 0.87

Vcu =0.3ζ x
d

fcd  bv,eff d=0.3·0.875·0.296·16.672/3·400·500=101.2KN Vcu,min

The shear reinforcement amount is 
 

=        = 0.5
Asw

st

mm2

mm2

100
200

then the contribution of the stirrups is:

The total shear resisted is, then 
VRd =Vcu+Vsu = 101.2+119.0 = 220.2 kN   >  VEd=206.3 kN, OK

Vsu = 1.4      fywd (ds–x) sinα (cotθ+ cotα)=1.4 0.5·400·0.352=119 kN
Asw

s




