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Volume optimization of end-clamped arches
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r e s u m e n

Aunque el arco surgió como sistema estructural hace más de dos mil años, esta tipología estructural todavía no está muy difundida 
y se adopta principalmente cuando hay que cubrir grandes luces. La eficiencia de los arcos depende principalmente de la explota-
ción óptima del material, es decir, de la minimización de la excentricidad del estrés, que reduce el volumen y el peso del material 
estructural. Una estructura eficiente, en estos términos, implica andamios simples y ligeros, contribuyendo así a minimizar los costes 
de construcción.

Aunque hay muchos conocimientos y literatura sobre arcos, todavía hay margen para la optimización del diseño. El presente estudio 
se enmarca en este contexto y se ocupa del análisis estructural de los arcos circulares planos empotrados bajo una carga vertical dis-
tribuida uniformemente y un peso propio. En el primer paso, la solución analítica del comportamiento estático y cinemático de los 
arcos se estudia por el método de la fuerza. En el segundo paso, se optimiza la forma del arco, asumiendo el volumen del arco, y por 
lo tanto el peso, como función objetiva. Finalmente se calculan los mínimos de la función objetiva (es decir, los parámetros óptimos 
de la forma geométrica) para poder utilizarlos con fines prácticos..
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a b s t r ac t

Even if arch arised as structural system more than two thousand years ago, this structural typology is still not widely diffused and is 
mainly adopted when large spans have to be covered. The structural efficiency of arches primarily depends on optimal material exploita-
tion, i.e. minimization of internal stress eccentricity that reduces structural material volume and weight. An efficient structure, under 
these terms, implies simple and light scaffolding, so contributing in minimizing construction costs.

Although very abundant knowledge and literature on arches, there is still scope for design optimization. This study is framed within this 
context and deals with the structural analysis of end-clamped plane circular arches under uniformly distributed vertical load and self 
weight. In the first step, the analytical solution of arch static and kinematic behaviour is derived by the force method. In the second step, 
the arch shape is optimized, by assuming the arch volume, and thus the weight, as objective function. Finally minima of the objective 
function (i.e. optimal geometric shape parameters) are computed and charted in order to be used for practical purposes.
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1.
introducción

Arches are inherently efficient structures; they are capable to 
transfer loads from the superstructure to the foundations [1] with 
low structural weight. If properly shaped, they become the opti-
mal solution to cross large spans and transfer high loads. Structur-
al efficiency depends on the predominance of centered normal 
stress [2-4]: in this circumstance smaller cross sections can be 
used with respect to beams. Contrarily internal stress eccentricity 
(i.e. large bending moments) or large shear stress should be avoid-
ed, leading to uneconomical design, sub-exploitation of building 
materials and unnecessary self weight [5,6]. Further design econ-
omy can be achieved via overall shape and cross section optimi-
zation, aimed at satisfying specific objectives and constraints. A 
key point is in many cases the minimization of structural volume, 
since arch self weight is the largest component of the vertical 
load, accounting for about half the total.

Optimization is a key issue for good design. From the data 
of 55 arch bridges built during the twentieth century reported 
in [7] several empirical lessons may be learnt. The first one 
is that (long span) concrete arches consume, per unit length, 
higher material quantities as compared to (shorter span) post 
tensioned concrete girder bridges. This is an expected result, at 
least since arches are curved, whereas beams are not; however, 
post tensioned concrete girder are not usable on large spans. 
The second lesson is that, for long span arch bridges, arch self 
weight is about half the total vertical load.

Both lessons further motivate the search for optimal (less 
material consuming) solutions. Further, structural optimiza-
tion is an important design tool for shape selection, also from 
an architectural view point.

Structural optimization has been common for a long time 
in mechanical and aeronautical engineering. In civil engineer-
ing, it has been progressively adopted more recently, for both 
buildings and bridges [8-11].

Traditionally, it is since the seventeenth century that first-
ly Galileo and then Hooke approached the hanged chain 
problem, but more accurate solutions, published on Acta Er-
uditorum, are due to Bernoulli, Leibniz and Huygens. Since 
then, this shape has been addressed as optimal solution for 
compressive arch ribs under directly applied loads, or for sus-
pended cables in tension. Catenary arches show properties of 
pure compression, without bending moment or shear stress. 
A chain suspended between two points will form this unique 
curve, which is routinely used for arches, and sometimes for 
shells (although this is not fully correct due to bi-dimensional 
stiffness).

It is worth to remember that Hooke, as reported by Hey-
man, was the first experimentalist; he introduced the concept 
of inverted catenary as optimal arch form. Significant support 
was also given by Gaudì, Otto and Isler during the nineteenth 
and twentieth century.

A more analytical study was the one from Ramsey that 
in 1953 at Cambridge derived geometrical configurations of 
flexible chains and strings, comparable to optimal arch design. 
More recent studies, carried out by Rozvany and Prager [12] 
were focused on searching for the optimal volume by mini-
mizing the angle between the parabolic funicular and the ver-
tical axis at support. The prerequisite of zero tensile strength is 

a common assumption to demonstrate the parabolic funicular 
shape, implying the absence of bending moment. It was proved 
that the parabolic funicular is optimal when tensile stress does 
not exceed one-third of compressive stress. A numerical ap-
proach employing this limiting conditions was presented by 
Darwich et al [13].

Thanks to a large-scale layout optimization technique de-
veloped by Gilbert and Tyas [14], it has been proved that an 
optimal structural performance can be obtained by adopting 
truss structures connecting the supports to the end points of a 
central parabolic section.

Another very recent analytical study about arch configu-
ration is due to Osserman [15]; he specifies in a precise and 
mathematical fashion the confusion on the Gatway Arch 
shape in St. Louis.

A challenging view on these results can be found in Tyas et 
al [16] where it is proved, by numerical evidences, that a par-
abolic funicular is not necessarily the optimal structural form 
to carry a uniform load between fixed supports; so an explicit 
analytical expression for geometry and stress is proposed in 
order to design suitable truss systems emerging from the sup-
ports and thus obtain a global optimization.

A fresh look upon optimization approach is also presented 
in the study from Vanderplaats and Han [17], where an opti-
mization technique based on an iterative force approximation 
method is combined with a finite-element technique to obtain 
a minimum arch volume, by assuming variable cross-section 
and simply supported or fixed end-constrains.

A very interesting study on moment-less arches is finally 
proposed by Lewis [18]. In his mathema-tical model, a predic-
tion on a simply supported arch rib shape is presented. Both 
arch selfweight and a uniformly distributed load are included 
in the analysis in order to show which geometry, among pa-ra-
bolic or catenary arch, is the most suitable one. Results show 
that catenary arch shape produces lower stresses.

2.
problem statement

2.1. Geometry

A geometrical description of a curved beam can be given 
through a 1-D solid with a centroid curve Γ and with a cross 
section A associated at each point of Γ (figure 1 left). It is assu-
med that the plane of Γ is also a plane of mechanical symme-
try. In figure 1 (right) the geometric scheme of the right half 
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Figure 1. Geometry (left); assumptions (right).



of the arch is represented, in which ϑ is the colatitude of the 
generic section and β the colatitude of the end section.

The following images show two generic problems of cur-
ved beams with different boundary conditions and different 
curvatures. Figure 2 (left) shows an hinged arch, asymmetri-
cally loaded with two external forces in a generic position and 
with supports at different heights. Figure 2 (right) shows a pa-
rabolic symmetrical clamped arch, loaded with two external 
forces. Our interest will be focused on clamped circular arches, 
symmetrically loaded.

2.2. Constitutive bond and Kinematics

In this study, we assume that the only non null deformation 
is the curvature κ, given by:

M = EJκ (1)

Moreover displacements and deformations are assumed small.

2.3. Loads

The arch is subjected to its self-weight and to a distributed 
external load for unit horizontal length q(x) (figure 3 left). The 
arch is made up of a homogeneous material with specific gra-
vity γ. So the tangent (p) τ and normal (pn) projections of the 
resultant load are given by:

pτ =  (      + γA)sinϑ

pn =  (qcosϑ – γA)cosϑ

q
2

 (2)

The Force method is applied, that in this context assumes a 
very simple and effective form. In fact hyperstatic unknowns 
can be determined by solving the internal work integral inclu-
ding in it just the bending component.
The parametric variables inherent the arch geometry are: R, 
β and λ, the first two expressing the radius and the opening 
conditions of the semicircle, while the last one is a slenderness 
parameter. More precisely λ =L/  , where =W/A is the verti-
cal semi-dimension of the section core, equal to the ratio of the 
section modulus W over the cross section area A.

Also the load ratio μ = γA /q is introduced, expressing the 
ratio between the self weight and the uniformly distrubuted load.

The equilibrium equations, according to the adopted refe-
rence system, can be written as:

N' (s) +       = -q  μsin        +      sin T(s)
R

s
R

2s
R

1
2

T' (s) –       = q  μcos        + cos2 (3)
N(s)

R
s
R

s
R

M' (s) + T' (s)  =  0  

with the boundary conditions:

   N (0) = – H (4)
   T (0) = 0

   M (β) = – X

where s = ϑR, while X and H are the hyperstatic unknowns. 
The following variable substitution is then applied:

R =             (5)
L

2sin(β)

and the following dimensionless mechanical variables are con-
sidered:

n =         ;   t =          ;   m =         ; 

h =         ;   x =           

N
qL

H
qL

T
qL

T
qL2

X
qL2

(6)

From Eqs. (3) and (6) the dimensionless internal forces are 
obtained:

1
2
1
2

1
8

n  (ϑ, β, h)= –      csc(β)sin(ϑ)(μϑ + sin(ϑ))hcos (ϑ)

t  (ϑ, β, h)= –      csc(β)cos(ϑ)(μϑ + sin(ϑ))–hsin(ϑ)

m (ϑ, β, h, x)=      (csc2(β)(–2μϑ sin(ϑ)–2μcos(ϑ)+ (7)

cos2(ϑ)) – cot 2 (β)  + 2 csc(β)  (βμ – 2hcos (ϑ))+

2cot (β)(μ csc (β)+2h)–8x)
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Figure 2. Two-hinged arch (left); clamped arch (right).



Therefore, by means of virtual work theorem, the following 
kinematic conditions are imposed:

ux(B)=0

γ (B)=0
 (8)

where ux(B)  and γ (B)=0 are the horizontal displacement and 
the rotation at the end section B. The principal system, stati-
cally determined, is shown in figure 3 (right), where also the 
hyperstatic unknowns X and H are indicated.

The dimensionless hyperstatic unknowns x and h are thus 
determined by Eqs. (8):
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24 (2β 2μ+β sin(2β )+ 2 cos(2β )–2) 24 (2β 2+β sin(2β )+ 2 cos(2β )–2)
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x (B) =– csc(β ) 

h (β ) =– csc(β ) 

+

+

+

(9)

Figure 3. Load configuration (left); principal system for force method (right).

4.
optimal solution

The arch that minimizes the volume is here determined, assu-
ming the volume representative of the material cost.

The optimal solution is found through suitable considera-
tions on dimensionless bending moment m values at clamped 
sections.

It is in fact assumed that the maximum stress is attained 
at the clamped sections. So, in order to solve the optimal pro-
blem, the stress at clamped sections under axial-bending con-
dition is set equal to the limit stress. Then the following opti-
mization condition is imposed:

             –           =  fd (10)
M
A

N
A

that in dimensionless form can be rewritten as:

– n + λm =  (11)
fd A
qL

Volume can be finally obtained deriving the cross section A 
from Eq. (11):

qL2

fd

V=2ARβ =            = (– n + λm) (12)
ALβ
sinβ

β
sinβ  

Figure 4 shows the trend of function m versus the colatitude θ 
and the load ratio π, for π =β /6, restrict-ing the analysis in the 
ranges 0 < ϑ < β; 0 < β < π/2, 0 < μ < 10. In figure 5 the same
graphs are depicted in the plane m–θ .

Figure 4. Function m versus θ  and μ , for β =π /6: front 
view (left) and assonometric view (right).

From numerical analysis it emerges that, under our assump-
tions, the maximum stress is attained at clambed end-section, 



as previously supposed, so allowing to assume Eq. (10) as de-
sign constraint.
For design purposes, a new variable, the dimensionless span 
η =L/ , is introduced, expressing the ratio between the arch 
span L and the height  = fd /γ of a column made by the same 
material of the arch and subjected to its self-weight, in which 
the prescribed normal stress fd is attained at the base section.

As above stated, by Eq. (12) it is possible to achieve the 
minimum arch volume able to carry self weight and applied 
load, in which the maximum normal stresses at the end-sec-
tion do not exceed the limit value fd. A logarithmic graph of 
the objective function V is shown in figure 6. The minimum 
point of the surface for each η value is marked by a bold dot 
and defines the optimal value of the colatitude β. It can be 
noted that the the objective function V tends to infinite in 
correspondence of the boundary of the feasible domain.

Finally, we determine the optimal dimensionless rise ≡ f/L, 
where f/L = (1 − cos β)/(2 sin β).

Figure 7 shows the optimal dimensionless rise  versus λ, 
for different values of η. Accordingly the following design 
procedure can be proposed: fixed the section slenderness , 
the material properties, λ and fd, and the span L, first the parame-
ters λ and η are obtained, then the optimal value of the dimen-
sionless rise is determined as opt = (λ, η). By observing figure 7, 
it emerges that the optimal values of the dimensionless rise are 
rather low, leading to drop arches as optimal solutions. In arch 
bridges the right rise-span proportion often represents a crucial 
aspect, that may influence the feasibility of the structure. The 
lower rise-span ratio implies the grater thrust and axial force, 
making the arch particularly suitable for bearing axial force but 
also leading to an increasing of the substructure cost. In this fra-
mework, the proposed methodology, allowing to calculate the 
optimal value of the arch rise in function of span, section amd 
material properties, represents an effective tool for the prelimi-
nary design of arch bridges. In particular, due to the mechani-
cal and geometrical hypotheses at the base of the method, it is 
mainly suitable for the design of steel arch bridges [19].

5
conclusions

In the present study an analytical solution for the optimal shape 
of a plane end-clamped arch subjected to its self weight and to a 
uniformly distributed vertical load has been presented. The arch 

volume, representative of the material cost, has been set as objec-
tive function. Optimal solutions have been derived by assuming 
that the normal stress reaches its maximum absolute value at the 
clamped end sections. Some simple rules for predesign and sensi-
tivity scopes have finally been proposed in a dimensionless form.

Figure 6. Objective function V versus β  and η .

Figure 7. Optimal dimensionless rise opt  
versus λ for different values of η.
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